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Abstract. We consider the discrete Schrodinger operator on 2 with the potential 
A cos 2n(nn + e). This one-dimensional model occurs in the study of an electron in a 
two-dimensional periodic potential with an uniform magnetic field. First we prove that 
for every o and for A < 2 this operator has no eigenvalue (i.e. localised state). Furthermore 
at A =2,  the eigenvalues (if they exist) belong to the set where the Lyapunov exponent 
vanishes and the associated eigenvectors are in I * ( Z )  but are not summable. 

In this letter we consider the following family of operators HA,o acting on l2(2): 

( ~ , , ~ u ) ( n ) =  u ( n + i ) + u ( n - i ) + A  C O S ~ + T I + ~ ) U ( ~ )  (1) 

where U is a sequence in l2(2) (i.e. such that I ; , , l~(n)1~<+m) and a is an irrational 
number. This equation has been used to describe a two-dimensional electron in a 
periodic potential with a uniform perpendicular magnetic field; then (1) occurs in the 
two limits where the magnetic field [respectively the periodic potential) is weak in 
which case a (respectively 1 / a )  is the number of flux quanta per unit cell. Since the 
early works [ 1,2] many exact results about the spectral resolution of HA,o have been 
obtained. For small A, by a perturbation technique it is proved [3] that there exists a 
component of an absolutely continuous spectrum provided a is a good irrational 
(Diophantine) number. This component corresponds to quasiperiodic waves obtained 
by perturbation of the plane waves at A = 0. This set of quasiperiodic waves spans the 
entire Hilbert space only in the limit A = O ;  but one expects (and numerical studies 
suggest) that this is an artefact of the perturbation technique and that the whole 
spectrum is absolutely continuous as long as A < 2 and a is a good irrational number. 
In this letter we prove a result which concurs with this conjecture; namely, we obtain 
the absence of eigenvalues (localised states) for any a and any A strictly smaller than 
2. This proof is a rigorous version of a duality result contained in [l]. Absence of 
eigenvalues has already been obtained when a is a Liouville number [4] and for almost 
every a in the case of the one-dimensional quasicrystals [ 5 ]  where the cosine is replaced 
by a piecewise constant function. On the other hand, for A > 2 an idea of Pastur [ 6 ]  
shows that there does not exist an absolutely continuous spectrum since the Lyapunov 
exponent ? ( E )  of the product of Jacobi matrices associated with the eigenvalue problem 
HA,@u = Eu is always strictly positive [2,7,8]. Furthermore it has been proved 193 that 
for large A and good irrational numbers there exist eigenvalues with exponentially 
decaying eigenvectors. The case A = 2 is of particular interest; it corresponds to the 
so-called Harper's equation and describes a two-dimensional crystal with square 
symmetry. In this case one expects that the spectrum (as a set) is of zero Lebesgue 
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measure and that the spectral measure is purely singular continuous. In this case, we 
prove that the eigenvalues (if they exist) do belong to the set where the Lyapunov 
exponent vanishes and that the corresponding eigenvectors are in 1*(Z) (by definition) 
but are not in / I @ ) .  Finally we mention that there are many other interesting results 
about this model; references can be found in [ 10,111. 

Let us assume that there exists an eigenvalue E of HA,o for some A < 2  and some 
8. Let us denote by U the corresponding normalised eigenvector and 12 its Fourier 
transform; that is 

G(k)  = C U (  n) exp(i2~kn).  (2) 

Then it is well known, by the Aubry-Andre duality [ 11, that the sequence U( n )  = 
n 

u1(~+an)  exp(ine), for fixed 7, is formally a solution of 

H4/A\,r~ = 2 E / A v  (3 )  

as can be checked by direct computation. Now let us specify the sense in which this 
solution actually exists. The function G( k )  is the Fourier transform of a sequence in 
I2(Z) and thus is defined as an L2 function of the unit circle with the normalised 
Lebesque measure; furthermore its L2 norm is one. This function is only defined up 
to a set of zero Lebesque measure so that (3) is satisfied for almost every T. Since 
G ( k )  has norm one in L2(0,1) we have: 

for any E > 0. Consequently for any E > 0, and for almost every r, there exists a constant 
C,(T) such that 

I f i (an+T)[< cE(T)1n11'2+8/2 ( 5 )  

for all n EZ where G ( a n  + T )  exp(in0) is a solution of (3). Furthermore G ( k )  cannot 
vanish almost everywhere thus U( n) cannot be identically zero for almost every T and 
there is a non-trivial solution of (3) satisfying ( 5 )  for a set of T with positive Lebesgue 
measure. This in turn implies that the Lyapunov exponent of the product of Jacobi 
matrices associated with (3) is zero as shown below. 

Let us recall that HA,~u = Eu can be rewritten as 

For almost every 8 

exists and is almost certainly constant (independent of e). This limit is the Lyapunov 
exponent y(E)  and Oseledec's theorem ensures that for almost every 8, any solution 
of HA,+ = Eu has to increase exponentially at +CO or -CO with the rate given by y( E). 
Thus inequality ( 5 )  (for a set of T of positive Lebesgue measure) does imply that the 
Lyapunov exponent associated with the eigenvalue equation (3) is zero. On the other 
hand, it is known that for A > 2, and for any energy, y ( E )  is strictly positive. Con- 
sequently there cannot exist any eigenvalue E of HA,B for any A < 2  and for any 8 :  
otherwise y should vanish at A ' =  4/A > 2 and E '= 2ElA. 
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If A =2 ,  since A and E are not modified by the Fourier transform of ( l ) ,  the 
previous results yield that eigenvalues can only occur on the set where the Lyapunov 
exponent vanishes. Furthermore, if an eigenfunction U belongs to I'(h) then its Fourier 
transform 6(k) is continuous. Thus, for any 7, (3) has a quasiperiodic solution. This 
solution cannot be zero since by continuity U^ should vanish all over the circle (as soon 
as a is irrational). In particular for T = 8 this quasiperiodic solution 6(an + 8) exp(in8) 
exists and should have a constant Wronskian with the initial eigenfunction U which 
is impossible. Consequently, any eigenfunction does belong to Iz(Z)\I1(Z). 

It may be noticed that at A = 2, one expects the Lyapunov exponent to vanish, at 
the most, on a set of zero Lebesque measure and moreover the spectrum to be of zero 
Lebesgue measure. In this case the spectral measure has to be singular and the difference 
between non-I'(B) eigenvectors and a singular continuous spectrum may be difficult 
to highlight. 
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